Читать книгу OpenCV от NemtyrevAI. Обнаружение объектов в компьютерном зрении, методы алгоритмы приложения + реальные примеры кода онлайн


Алгоритм DPM сначала извлекает признаки из входного изображения с помощью средства извлечения признаков, такого как гистограмма ориентированных градиентов (HOG) или сверточная нейронная сеть (CNN). Эти признаки затем передаются через классификатор, который обучен различать. между объектом и фоновыми признаками Классификатор выводит оценку для каждого признака, указывающую вероятность того, что признак принадлежит объекту.


Модель деформируемых частей затем используется для моделирования формы и положения объекта. Модель состоит из набора частей, каждая из которых связана с определенным местоположением и ориентацией. Части соединены пружинами, которые позволяют изменять форму объекта. и поза Модель обучена минимизировать разницу между прогнозируемой формой объекта и фактической формой объекта, а также разницу между прогнозируемой и фактической позой объекта.


После обучения модели ее можно использовать для обнаружения объектов на новых изображениях. Алгоритм сначала извлекает признаки из входного изображения с помощью экстрактора признаков. Затем эти признаки передаются через классификатор, который выводит оценку для каждого признака. Модель деформируемых частей затем используется для объединения оценок отдельных элементов в оценку всего объекта. Алгоритм ищет объект с наивысшей оценкой на изображении и возвращает ограничивающую рамку и метку класса для этого объекта.


Алгоритм DPM использовался для достижения самых современных результатов в нескольких тестах обнаружения объектов, включая наборы данных PASCAL VOC и ILSVRC. Алгоритм также широко используется в практических приложениях, таких как автономное вождение, наблюдение и робототехника.


Пример того, как алгоритм DPM можно использовать для обнаружения объектов на изображении:

import cv2

import numpy as np

from sklearn.externals import joblib


# Load the trained DPM model

model = joblib.load('dpm_model.pkl')


# Load the input image

img = cv2.imread('input.jpg')


# Convert the image to grayscale

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Вход Регистрация
Войти в свой аккаунт
И получить новые возможности
Забыли пароль?