Читать книгу Искусственный интеллект. Машинное обучение онлайн

3. Обучение модели: Затем мы выберем алгоритм классификации для решения задачи. В данном случае мы можем использовать метод k ближайших соседей (k-NN) из-за его простоты и интуитивной понятности. Мы обучим модель на обучающем наборе данных, передавая ей оценки за другие предметы и другие характеристики в качестве признаков, а целевая переменная будет указывать на успешность сдачи экзамена по математике.

4. Оценка качества модели: После обучения модели мы оценим ее качество на тестовом наборе данных, вычислив метрики, такие как точность классификации, матрица ошибок и отчет о классификации.

Код решения:

```python

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

# 1. Подготовка данных

data = pd.read_csv("student_data.csv")

# 2. Разделение данных на обучающий и тестовый наборы

X = data.drop('Math_Exam_Result', axis=1) # признаки

y = data['Math_Exam_Result'] > 70 # целевая переменная (бинарная)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 3. Обучение модели (метод k-NN)

knn_model = KNeighborsClassifier(n_neighbors=5)

knn_model.fit(X_train, y_train)

# 4. Оценка качества модели

y_pred = knn_model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

conf_matrix = confusion_matrix(y_test, y_pred)

class_report = classification_report(y_test, y_pred)

print("Accuracy:", accuracy)

print("Confusion Matrix:\n", conf_matrix)

print("Classification Report:\n", class_report)

```

Перед выполнением этого кода необходимо убедиться, что данные находятся в файле "student_data.csv" и соответствуют описанной выше структуре. Кроме того, предварительная обработка данных (например, заполнение пропущенных значений, кодирование категориальных признаков) может потребоваться в зависимости от конкретного набора данных.


Метод опорных векторов (SVM):

Метод опорных векторов (SVM) является одним из самых популярных алгоритмов в машинном обучении, применимым как для задач классификации, так и для регрессии. Он основан на поиске гиперплоскости в пространстве признаков, которая максимально разделяет объекты разных классов. Этот подход делает SVM особенно эффективным при работе с данными, которые могут быть линейно разделимы, что позволяет ему обеспечить высокую точность классификации.

Вход Регистрация
Войти в свой аккаунт
И получить новые возможности
Забыли пароль?