Читать книгу Искусственный интеллект. Машинное обучение онлайн
3. Обучение модели: Затем мы выберем алгоритм классификации для решения задачи. В данном случае мы можем использовать метод k ближайших соседей (k-NN) из-за его простоты и интуитивной понятности. Мы обучим модель на обучающем наборе данных, передавая ей оценки за другие предметы и другие характеристики в качестве признаков, а целевая переменная будет указывать на успешность сдачи экзамена по математике.
4. Оценка качества модели: После обучения модели мы оценим ее качество на тестовом наборе данных, вычислив метрики, такие как точность классификации, матрица ошибок и отчет о классификации.
Код решения:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# 1. Подготовка данных
data = pd.read_csv("student_data.csv")
# 2. Разделение данных на обучающий и тестовый наборы
X = data.drop('Math_Exam_Result', axis=1) # признаки
y = data['Math_Exam_Result'] > 70 # целевая переменная (бинарная)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 3. Обучение модели (метод k-NN)
knn_model = KNeighborsClassifier(n_neighbors=5)
knn_model.fit(X_train, y_train)
# 4. Оценка качества модели
y_pred = knn_model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)
print("Accuracy:", accuracy)
print("Confusion Matrix:\n", conf_matrix)
print("Classification Report:\n", class_report)
```
Перед выполнением этого кода необходимо убедиться, что данные находятся в файле "student_data.csv" и соответствуют описанной выше структуре. Кроме того, предварительная обработка данных (например, заполнение пропущенных значений, кодирование категориальных признаков) может потребоваться в зависимости от конкретного набора данных.
Метод опорных векторов (SVM):
Метод опорных векторов (SVM) является одним из самых популярных алгоритмов в машинном обучении, применимым как для задач классификации, так и для регрессии. Он основан на поиске гиперплоскости в пространстве признаков, которая максимально разделяет объекты разных классов. Этот подход делает SVM особенно эффективным при работе с данными, которые могут быть линейно разделимы, что позволяет ему обеспечить высокую точность классификации.