Читать книгу 120 практических задач онлайн

1. Приведение данных в одномерный вид:

```python

model.add(layers.Flatten())

```

– Преобразование многомерного выхода сверточных слоев в одномерный вектор.

2. Первый полносвязный слой:

```python

model.add(layers.Dense(64, activation='relu'))

```

– 64 нейрона: Обучение нелинейным комбинациям признаков.

3. Выходной полносвязный слой:

```python

model.add(layers.Dense(10))

```

– 10 нейронов: Каждый нейрон соответствует одному классу из 10 в наборе данных CIFAR-10.

Построенная таким образом сеть состоит из нескольких сверточных слоев для извлечения признаков, слоев подвыборки для уменьшения размерности данных и полносвязных слоев для классификации. Эта архитектура позволяет эффективно решать задачу классификации изображений, выделяя важные признаки и обучаясь на их основе.

5. Построение простой рекуррентной нейронной сети для анализа временных рядов

Задача: Прогнозирование цен на акции

Для построения простой рекуррентной нейронной сети (RNN) для анализа временных рядов и прогнозирования цен на акции можно использовать библиотеку TensorFlow и её высокоуровневый интерфейс Keras. В этом примере мы рассмотрим, как использовать LSTM (Long Short-Term Memory) слои, которые являются разновидностью RNN, чтобы построить модель для прогнозирования цен на акции.

Шаги

1. Импорт библиотек и модулей.

2. Подготовка данных.

3. Построение модели RNN.

4. Компиляция и обучение модели.

5. Оценка и тестирование модели.


Пример кода:

```python

import numpy as np

import pandas as pd

import tensorflow as tf

from tensorflow.keras import layers, models

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

# Шаг 1: Импорт библиотек

import numpy as np

import pandas as pd

import tensorflow as tf

from tensorflow.keras import layers, models

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

# Шаг 2: Подготовка данных

# Загрузка данных. Предположим, что у нас есть CSV файл с историческими ценами на акции.

Вход Регистрация
Войти в свой аккаунт
И получить новые возможности
Забыли пароль?